

institute for art, science and technology

Goals of this training

General understanding of:

- Microbiology
- Biosafety jargon like contamination & infection
- Personal Protection Equipment
- Chemicals, MSDS and safety labels
- Handling flames and fire
- Sterile techniques
- Waste disposal
- Documentation

After reading these slides you may obtain an Open Wetlab Safety Certificate after successfully answering all questions of the safety test.

Importance of safety

Safe procedures protect:

The environment
 Your colleagues
 Yourself

Phylogeny of the living world

This image represents the classification and relation of living organisms. There is a huge diversity. Especially microbes have evolved the ability to live nearly anywhere. So it's best to assume their presence on anything that has not been sterilized.

Micro organisms

A typical micro organism is independently capable of:

- Growth
- Energy production
- Reproduction

But they can also have more interesting features, like bio luminescence (picture)

G Sulfur (purple) bacteria bloom

Microbes are capable of turning entire lakes red

G Cyanobacteria (algae)

Capable of generating energy from sun light

Importance of microbes

Microbes can make food (beer, cheese, etc), oxygen and fixate nitrogen

Life is made out of cells

The pictures show low (left) and high (right) magnification of cells

Biotechnology regards cells as molecular programmable machines

Antoni van Leeuwenhoek 1684

First person to visually observe individual microbes by microscope

Pure Bacillus subtilis cultures, thanks to heat-resistant endospores

Geißeln der Bafterien a von Spirillum Undula in der Theilung; b vom Henbacillus (Bacillus subtilis), Faden bildend; c einzelnes Stäbchen des Henbacillus; d von Fäulnisbafterien (Ba-

Methodology to proof microbes are causing illness

Proof that microbes do not "spontaneously appear"

Richard Petri and agar agar

Invented agar dishes as a substitute growth medium for potato slices

Discovery of the "virus"

Modern microbiology

Has become a data science due to data acquisition "-omics" techniques

FINAL MASTER PROJECT (15 ECTS)

Operation Contamination

- Pasteur already said "Bacteria are everywhere"
- There are 3 types micro organisms:
 - Saprophytes live on inanimate material
 - Commensal live on other living organisms
 - Pathogens cause disease in living organisms
- Contamination means:
 - "in contact with micro organisms"
- Infection means:
 - Illness due to micro organisms that are able to grow in the host
 - F.e. measles virus, cholerabacter, chickenpox virus, etc
- Pathogen means:
 - Illness causing micro organisms
 - There is always an interaction between pathogen and host

(C) Understanding contamination (2)

- Virulence is:
 - Measure of pathogenity
- Infection doses are defined as:
 - ID50 = doses at which 50% of test animals get sick
 - LD50 = doses at which 50% of test animals die
- Most common pathways of infection are:
 - Respirator infections via contact between mouth and hand
 - Droplets infection via sneezing
 - Aerosols and dust (most effective indoors)
 - Toilet bacteria hardly survive on the door handle, but love your food!

Contamination in the lab

- Bio safety level number indicates the level of regulations that are in place to prevent contamination.
- Types of organisms allowed per level:
 - 1) Well characterized non pathogenic organisms on humans
 - 2) Micro organisms with high infection doses, and known cures
 - 3) Micro organisms with low infection doses, and known cures
 - 4) Micro organisms with extremely low infection doses, severe disease and no cure

General Rules in the lab

The following general rules apply to working in the Open Wetlab:

- Wash your hands before entering and when leaving
- Always wear a lab coat
- Clean up any spills immediately
- Label everything!
- Request help in case of an (small) accident from an assistant
- In case of doubt: ask for help
- Be careful with hot plates, glass ware and the microwave. Others might not suspect that the item is hot.
- Keep an close eye on flames. Never leave it unattended.
- Keep chemicals away from flames
- Only use machines after instructions
- Do not eat or drink during experiments

Personal Protection

Equipment to protect yourself

These items are recommended in the lab

Eve protection by safety goggles

- Wear safety goggles, especially when handling liquids
- Contact lenses
 - OK, as long as goggles are worn
- Normal glasses
 - Wear goggles over them

 Wear when you are exposing yourself to anything light source below 400 nm

- UV is dangerous to skin and eyes!
 - Causes DNA damage that leads to cancer
 - Causes cataract in the eye

Bow to wear your hear and jewelry

- Tie back long hair
 - Hair is flammable
 - Gets tangled up easily
- Same goes for jewelry
 - No watches
 - No rings
 - No necklaces

- Not allowed:
 - Sandals
 - Flip flops
 - Crocs
 - Open toe
 - Open top
 - Canvas
- Wear leather closed shoes instead

- <u>Wear gloves only when necessary</u>
- When you spill on your glove
 - Change it immediately
- Do NOT reuse gloves
 - Throw them in the bin after use
- Do NOT use latex gloves
 - Not protective against all chemicals
 - Use nitrile instead
- Nitrile and latex are highly flammable!
 - Never wear gloves next to a flame
 - Plastic burns into your skin

- Always keep one hand ungloved
- This is your "clean" hand
- With this hand you touch:
 - Door handle
 - Telephones
 - Pens
 - Keyboards
 - pH meter
 - Buttons

Wash your hands!

Remember, before and after experiments:

- Wash your hands
- Even after wearing gloves

Chemicals

- Use labels on everything!!
- You are the only one who knows what is in the container
- Labels must consist of:
 - Content
 - Date
 - Name

Global Harmonized System Labels

Familiarize yourself with the meaning of these symbols:

1) carcinogenic, germ cell mutagenic, toxic to reproduction / 2) specific target organ toxicity

NFPA safety diamond

NFPA diamonds are often used as well

NFPA Rating Explanation Guide

HEALTH HAZARD

- 4 = Can be lethal
- 3 = Can cause serious or permanent injury
- 2 = Can cause temporary incapacitation or residual injury
- 1 = Can cause significant irritation
- 0 = No hazard
- ALK = Alkaline
- ACID = Acidic
- COR = Corrosive
- OX = Oxidizing
 - = Radioactive
- Reacts violently or explosively with water
- = Reacts violently or ₩OX explosively with
- water and oxidizing

SPECIAL HAZARD

FLAMMABILITY HAZARD

- 4 = Will vaporize and readily burn at normal temperatures
- 3 = Can be ignited under almost all ambient temperatures
- 2 = Must be heated or high ambient temperature to burn
- 1 = Must be preheated before ignition can occur
- 0 = Will not burn
- 4 = May explode at normal temperatures and pressures
- 3 = May explode at high temperature or shock
- 2 = Violent chemical change at high temperatures or pressures
- 1 = Normally stable. High temperatures make unstable
- 0 = Stable

INSTABILITY HAZARD

This chart for reference only - For complete specifications consult the NFPA 704 Standard

Do not bring anything with such label to the Open Wetlab

- Material Safety Data Sheets come with every chemical and contain information about all safety aspects such as:
 - Procedures for safe handling
 - Physical Data
 - Melting point
 - Boiling point
 - Toxicity
 - Reactivity
 - Storage
 - First aid procedure
- Read the MSDS before you use any chemical!

Chemicals in the Open Wetlab

- Mostly house hold / super market chemicals
- Ask for permission before introducing new chemicals
- All chemicals can be found in the Inventory Folder
 - Please add new chemicals to the list

Flames and Fire

- Do NOT use when close to flammable gases or liquids
- Alert others in the lab before lighting a flame
- NEVER leave a flame unattended
 - NEVER
 - NEVER

- Notify everyone
- If the fire is small:
 - Take a fire extinguisher and try to extinguish the fire
- When the fire is too big or extinguishing fails:
 - Follow the exit lights to the nearest exit
 - Pull fire alarm
- Evacuate the building
- Call the emergency number 112

Biosafety

- It is prohibited to bring pathogens to the Open Wetlab
- Do NOT incubate environmental samples at body temperature: 37 C
- To check if an organism is a pathogen, search for it on the internet or look it up in this list of organisms:
 - <u>http://www.phac-aspc.gc.ca/lab-bio/res/psds-ftss/index-eng.php</u>

Wash your hands

Remember, the best protection against infection:

- Wash your hands
- Even after wearing gloves

Working sterile

Working sterile is important for safety:

- Definition: aseptic techniques in prevention of contamination
- Dutch: "Veilige Microbiologische Technieken" (VMT)
- Common techniques to sterilize are:
 - Heating: glowing in a flame, boiling, pasteurization
 - Physical sterilization: UV, Roentgen or gamma radiation
 - Chemical: ethanol, chloride, etc
 - Filtration
- Most common solid and liquids:
 - Steam boiling
 - 20 minutes at 120 degree Celsius
- Glass sterilization:
 - 2 4 hours at 180 degrees Celsius

Waste Disposal

Think of how to dispose of things <u>before</u> you bring it into the lab

Biological Waste

You are responsible for killing anything you grow:

- Kill of any culture with 50% bleach, 50% water solution
 - Incubate for 24h before disposal
- Clean any used surface and object with 70% ethanol (red capped bottles)

- Do NOT dispose in the normal trash bin
- Special "broken glass" container
- Use broom to clean up, because you can easily cut yourself
- Glass container is on the Nieuwmarkt

G Chemical waste

- Check what is allowed to store in the lab with the labmanager
- Check what is allowed to go down the sink with the labmanager
- Do NOT mix:
 - Concentrated Acids and Bases
 - Oxidizers and Flammables
 - Water reactive substances and aqueous solutions
 - Cyanides and acids => cyanide gas
 - Bleach and acids => chloride gas
- Search for reactivity on the internet!
- Read the MSDS before using a chemical!

Documentation

All work in the Open Wetlab must be documented

- fablab.waag.org
 Register yourself
 Document your project
 Update with progress
 You can also find documentation of machines on this website
 There also is a reservation system
- meetup.com

There is a forum for questions to the community Feel free to start your own event

- Report low stock before it runs out
- Fill out the form in the pink "Lab Map"
- Request new orders at the lab manager, <u>wetlab@waag.org</u>

Incident report form

Always report incidents to the labmanager

- Let's learn from mistakes
- Now matter how small or seemingly insignificant
- Form in the pink "Lab Map"
- Write down what you were doing, when, what went wrong and how it could be prevented

Wrap up

And finally... Wetlab House Rules

- 1. Wash your hands!
- 2. No drinking or eating in the lab during experiments
- 3. Sign your name on the attendance form when you come in and out of the lab
- 4. Tie back long hair & wear a lab coat
- 5. Label everything you experiment with (name owner, date, content)
- 6. Clean up! No paperwork, dirty glasses, left-overs etc.

Safety Practical

Now it is time for some hands-on instructions:

- Washing hands
- Signing in and out
- Personal protection equipment
- Clean workspace
- Pipetting
- Emergence exits and fire extinguishers
- Cleaning up, especially glassware
- Label tour
- Machine tour
- Stock keeping
- Brewing coffee / making tea